王兆才(副教授)

發布者:張程冬發布時間:2024-10-11浏覽次數:2713


 

基本信息:

王兆才,男,籍貫山東濰坊,博士,副教授,碩士生導師。手機:15692166813Emailzcwang@shou.edu.cn; zcwang1028@163.com. ORCID0000-0003-1396-6835.

教育與工作經曆:

20067-今 上海海洋大學 伟德BETVLCTOR

20169月-20178月 北京大學 信息科學技術學院 訪問學者

20099月-20126月 複旦大學 計量經濟學 博士

2003年9月-20063月 上海交通大學 計算數學碩士

教學工作:

微課比賽華東賽區二等獎,共同主講課程獲得國家級一流課程、上海市一流課程、上海市優質在線課程、上海海洋大學精品課程等稱号。

學生工作:

指導學生獲得全國大學生數學建模二等獎,上海市數學建模一等獎等多項,獲得上海市優秀數學建模指導老師,獲上海海洋大學育才獎等榮譽,指導本科生發表中科院1區Top論文多篇,指導研究生均位列學院前5%和獲得國家獎學金,上海市優秀畢業生稱号,。

科研研究方向

1. 水文預報;2. 梯級水庫調度;3. -能-糧-碳耦合系統

發表科研論文:

第一或通訊發表相關SCI論文80餘篇(包括Journal of Cleaner Production》,《Science of the Total Environment》,《Water Resources Research》,《Journal of Environmental Management》,《Journal of Hydrology》等中科院1區Top期刊論文20餘篇),ESI熱點論文4ESI高被引10篇,發明專利4項,H-index22。其中3年第一或通訊發表的36SCI論文及《水利學報》篇如下:

[1] Huang, J., Wang, Z.*, Dong, J., & Wu, J. (2024). Research on runoff interval prediction method based on deep learning ensemble modeling with hydrological factors. Stochastic Environmental Research and Risk Assessment, Accepted. doi: 10.1007/s00477-024-02780-6 (IF3.9JCR1)

[2] Yao, Z., Wang, Z.*, Huang, J., Xu, N., Cui, X., & Wu, J. (2024). Interpretable prediction, classification and regulation of water quality: A case study of Poyang Lake, China. Science of the Total Environment, 951,175407. (Top期刊IF8.2JCR1)

[3] Li, Y., Wang, Z.*, & Liu, S. (2024). Enhance carbon emission prediction using bidirectional long short-term memory model based on text-based and data-driven multimodal information fusion. Journal of Cleaner Production, 471, 143301. (Top期刊IF9.7JCR1)

[4] Chen, L., Wang, Z.*, Jiang, Z., & Lin, X. (2024). Deep learning models for multi-step prediction of water levels incorporating meteorological variables and historical data. Stochastic Environmental Research and Risk Assessment, Accepted. doi: 10.1007/s00477-024-02766-4 (IF3.9JCR1)

[5] Wang, Z., Xu, N., Bao, X., Wu, J., & Cui, X. (2024). Spatio-temporal Deep Learning Model for Accurate Streamflow Prediction with Multi-source Data Fusion. Environmental Modelling & Software, 178, 106091. (IF4.8JCR1)

[6] Wu, J., Wang, Z.*, Dong, J., *Yao, Z., Chen, X., Li, Q., & Fan, H. (2024). Multi-step ahead dissolved oxygen concentration prediction based on knowledge guided ensemble learning and explainable artificial intelligence. Journal of Hydrology, 636, 131297. (Top期刊IF5.9JCR1)

[7] Wang, Z., Wu, X., Liang, K., & Wu, T. (2024). Exploring the Potential of DNA Computing for Complex Big Data Problems: A Case Study on the Traveling Car Renter Problem. IEEE Transactions on Nanobioscience, 23(3), 391-402. (IF3.7JCR1)

[8] Wu, J., Chen, X., Li, R., Wang, A., Huang, S., Li, Q., Qi, H., Liu, M., Cheng, H., & Wang, Z.* (2024). A novel framework for high resolution air quality index prediction with interpretable artificial intelligence and uncertainties estimation. Journal of Environmental Management, 357, 120785. (Top期刊IF8JCR1)

[9] Song, Q., Wang, Z.*, & Wu, T. (2024). Risk analysis and assessment of water resource carrying capacity based on weighted gray model with improved entropy weighting method in the central plains region of China. Ecological Indicators, 160, 111907. (Top期刊IF7JCR1)

[10] Yang, Z., Wang, Z.*, Yao, Z., & Bao, X. (2024). Optimal allocation planning of regional water resources with multiple objectives using improved firefly algorithm. AQUA—Water Infrastructure, Ecosystems and Society, 73(4), 746-770. (IF2.1JCR2)

[11] Cui, X., Wang, Z.*, Xu, N., Wu, J., & Yao, Z. (2024). A secondary modal decomposition ensemble deep learning model for groundwater level prediction using multi-data. Environmental Modelling & Software, 175,105969. (IF4.8JCR1)

[12] Dong, J., Wang, Z.*, Wu, J., Cui, X., & Pei, R. (2024), A Novel Runoff Prediction Model Based on Support Vector Machine and Gate Recurrent unit with Secondary Mode Decomposition. Water Resources Management, 38(3), 1655-1674. (IF3.9JCR1)

[13] Wang, Z., Zhao, H., Bao, X., & Wu, T. (2024), Multi-objective optimal allocation of water resources based on improved marine predator algorithm and entropy weighting method. Earth Science Informatics, 17(2), 1483-1499. (IF2.7JCR2)

[14] Wang, Z., Wang, Q., Liu, Z., & Wu, T. (2024), A deep learning interpretable model for river dissolved oxygen multi-step and interval prediction based on multi-source data fusion. Journal of hydrology, 629, 130637. (Top期刊IF5.9JCR1)

[15] Dong, J., Wang, Z.*, Wu, J., Huang, J., & Zhang, C. (2023), A water quality prediction model based on signal decomposition and ensemble deep learning techniques. Water Science and Technology, 88(10), 2611-2632. (IF2.5JCR2)

[16] Zhang, C., Zou, Z., Wang, Z.*, & Wang, J. (2023), Ensemble deep learning modeling for Chlorophyll-a concentration prediction based on two-layer decomposition and attention mechanisms. Acta Geophysica, Accepted. DOI: 10.1007/s11600-023-01240-z (IF2JCR2)

[17] Wu, J., Wang, Z.*, Dong, J., Cui, X., Tao, S., & Chen, X. (2023), Robust Runoff Prediction with Explainable Artificial Intelligence and Meteorological Variables from Deep Learning Ensemble Model. Water Resources Research, 59(9), e2023WR035676. (Top期刊IF4.6JCR1)

[18] Yao, Z., Wang, Z.*, Wu, T., & Lu, W. (2024), A hybrid data-driven deep learning prediction framework for lake water level based on the fusion of meteorological and hydrological multi-source data. Natural Resources Research, 33, 163-190. (IF4.8JCR1)

[19] Wang, Z., Liang, K., Bao, X., & Wu, T. (2024), A novel Algorithm for Solving the Prize Collecting Traveling Salesman Problem based on DNA Computing, IEEE Transactions on Nanobioscience, 23(2), 220-232. (IF3.7JCR1)

[20] Yao, Z., Wang, Z.*, Wang, D., Wu, J., & Chen, L. (2023), An ensemble CNN-LSTM and GRU adaptive weighting model based improved sparrow search algorithm for predicting runoff using historical meteorological and runoff data as input. Journal of hydrology, 625, 129977. (Top期刊IF5.9JCR1)

[21] Wang, Z., Liang, K., Bao, X., & Wu, T. (2023). Quantum speedup for solving the minimum vertex cover problem based on Grover search algorithm. Quantum Information Processing, 22(7), 271. (IF2.2JCR1)

[22] Bao, X., Wang, G., Xu, L., & Wang, Z.* (2023). Solving the Min-Max Clustered Traveling Salesmen Problem Based on Genetic Algorithm. Biomimetics, 8(2), 238. (IF3.4JCR1)

[23] Wang, Z., Wang, Q., & Wu, T.# (2023). A novel hybrid model for water quality prediction based on VMD and IGOA optimized for LSTM, Frontiers of Environmental Science & Engineering, 17(7), 88. (IF6.1JCR1)

[24] Yao, Z., Wang, Z.*, Cui, X., & Zhao, H. (2023). Research on multi-objective optimal allocation of regional water resources based on improved sparrow search algorithm. Journal of Hydroinformatics, 25(4), 1413-1437. (IF2.2JCR2)

[25] Tan, R., Hu, Y., Wang, Z.* (2023), A multi-source data-driven model of lake water level based on variational modal decomposition and external factors with optimized bi-directional long short-term memory neural network, Environmental Modelling & Software, 167, 105766. (IF4.8JCR1)

[26] Tan, R., Wang, Z.*, Wu, T., Wu, J. (2023), A data-driven model for water quality prediction in Tai Lake, China, using secondary modal decomposition with multidimensional external features, Journal of Hydrology-Region study, 47, 101435. (IF4.7JCR1)

[27] Wu, J., Dong, J., Wang, Z.*, Hu, Y., & Dou, W. (2023). A novel hybrid model based on deep learning and error correction for crude oil futures prices forecast. Resources Policy, 83, 103602. (Top期刊)

[28] Cui, X., Wang, Z.*, & Pei, R. (2023). A VMD-MSMA-LSTM-ARIMA model for precipitation prediction. Hydrological Sciences Journal, 68(6), 810-839. (IF2.8JCR2)

[29] Wu, J., Wang, Z.*, Hu, Y., Tao, S. & Dong, J. (2023). Runoff Forecasting using Convolutional Neural Networks and optimized Bi-directional Long Short-term Memory, Water Resources Management, 37 (2), 937-953. (IF3.9JCR1)

[30] Chen, L., Wu, T., Wang, Z.*, Lin, X., & Cai, Y. (2023). A novel hybrid BPNN model based on adaptive evolutionary Artificial Bee Colony Algorithm for water quality index prediction. Ecological Indicators, 146, 109882. (Top期刊ESI高被引IF7JCR1)

[31] Wang, Z., Deng, A., Wang, D., & Wu, T. (2022). A parallel algorithm to solve the multiple travelling salesmen problem based on molecular computing model. International Journal of Bio-Inspired Computation, 20(3), 160-171. (IF1.7JCR2)

[32] Wang, Z., Wu, X., & Wu, T. (2022). A Parallel DNA Algorithm for Solving the Quota Traveling Salesman Problem Based on Biocomputing Model, Computational Intelligence and Neuroscience, 2022, 1450756. (IF3.1JCR2)

[33] Wu, J., & Wang, Z.* (2022). A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory. Water, 14(4), 610. (IF3JCR2)

[34] Wu, X., Wang, Z.*, Wu, T., & Bao, X. (2022). Solving the Family Traveling Salesperson Problem in the Adleman–Lipton Model Based on DNA Computing. IEEE Transactions on NanoBioscience, 21(1), 75-85. (IF3.7JCR1)

[35] Wu, X., & Wang, Z.* (2022). Multi-objective optimal allocation of regional water resources based on slime mould algorithm. The Journal of Supercomputing, 78 (16), 18288-18317. (IF2.5JCR2)

[36] Guo, N., & Wang, Z.* (2022). A combined model based on sparrow search optimized BP neural network and Markov chain for precipitation prediction in Zhengzhou City, China. Journal of Water Supply: Research and Technology - AQUA, 71(6), 782-800. (IF4.3JCR1)

[37] 黃靖涵,王兆才*,吳俊豪,姚之遠,基于深度學習集合優化模型的徑流區間預測研究,水利學報。接受日期:2024-7-29

 

科研項目:

主持省部級以上科研項目十餘項,包括:

1)中國教育部人文社會科學研究基金規劃項目,長江上遊水文預報與梯級水庫群調度耦合系統的動态多目标優化機制研究,2024/10-2026/9主持

2)中國水利水電科學研究院泥沙科學與北方河流治理重點實驗室開放研究基金,梯級水庫群多目标聯合調度的算法研究,2024/1-2025/12,主持;

3)水能資源利用關鍵技術湖南省重點實驗室開放研究基金面上項目,金沙江段梯級水庫群多目标聯合調度,2024/1-2025/12,主持;

4)中國水利水電科學研究院流域水循環模拟與調控國家重點實驗室開放研究基金,基于自組裝納米金DNA計算的流域水沙優化配置算法研究,2019/05-2021/04已結題(評價等級:A),主持;

5)中國水利水電科學研究院流域水循環模拟與調控國家重點實驗室開放基金, 基于生物編碼結構的水沙動力學并行計算算法研究,2016/05-2018/04,已結題(評價等級:A),主持

6)上海市高校青年骨幹教師國内訪問學者人才計劃,高性能并行計算算法研究,2016/09-2017/06,已結題,主持;

社會工作:

Water》期刊特刊編輯,《Applied Computational Intelligence and Soft Computing》期刊編輯,以及《River》,《華北水利水電大學學報》和《水利水電技術》青年編委。


Baidu
sogou